习题解答

1. 已知 \mathbb{R}^3 上的线性变换 \mathscr{A} 对于基 $\alpha_1=(-1,0,2)^T,\alpha_2=(0,1,1)^T,\alpha_3=(3,-1,-6)^T$ 的像为 $\mathscr{A}(\alpha_1)=(-1,0,1)^T,\mathscr{A}(\alpha_2)=(0,-1,2)^T,\mathscr{A}(\alpha_3)=(-1,-1,3)^T.$

(1) 验证 $\alpha_1, \alpha_2, \alpha_3$ 是 \mathbb{R}^3 的一组基

<u>801</u> 只需验证 Q1, Q2, Q3 线性无关,而

$$|(\alpha_1, \alpha_2, \alpha_3)| = \begin{vmatrix} -1 & 0 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & -6 \end{vmatrix} = -(\neq 0$$

放 Q1. Q2. Q3 线性天美进而是 P3 的基

(2) 试求 A 在基 α1,α2,α3 下的矩阵;

Solity 从在QLQ 内的矩阵为A则有

$$(\mathscr{A}(\alpha_{1}),\mathscr{A}(\alpha_{2})) = (\alpha_{1},\alpha_{2},\alpha_{3}) A$$

$$\text{MRA} A = \begin{pmatrix} -1 & 0 & 3 \\ 0 & 1 & -1 \\ 2 & 1 & -6 \end{pmatrix} - \begin{pmatrix} -1 & 0 & -1 \\ 0 & -1 & -1 \\ 1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} -2 & 9 & 7 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix}$$

(3) 求 A 在 R3 的自然基下的矩阵.

到记P=(风, ぬ, ぬ), 设处在股的触基下的矩阵为角,则A=PT角P,从而有

$$\hat{A} = PAP^{-1} = \begin{pmatrix} -7 & 4 & -4 \\ -4 & 1 & -2 \\ 15 & -6 & 8 \end{pmatrix}$$

2. 设 🗸 是三维线性空间 V 上的线性变换, \checkmark 在 V 的基 $\alpha_1,\alpha_2,\alpha_3$ 下的矩阵为 $A=\begin{pmatrix}0&-2&2\\2&-4&2\\2&-2&0\end{pmatrix}$.

(1) 求 Ker A 和 Im A 的维数和一组基;

Sol 作初等变换

$$A = \begin{pmatrix} 0 & -2 & 2 \\ 2 & -4 & 2 \\ 2 & -2 & 0 \end{pmatrix} \sim \begin{pmatrix} | & -| & 0 \\ 0 & | & -| \\ 0 & 0 & 0 \end{pmatrix}$$

于是有 dim Im $d = dim span \{ d(\alpha_1), d(\alpha_2), d(\alpha_3) \} = 2$,有基 $2\alpha_2 + 2\alpha_3$, $-2\alpha_1 - 4\alpha_2 - 2\alpha_3$ 而 dim $\ker d = 1$,有基 $\alpha_1 + \alpha_2 + \alpha_3$.

(2) 将线性变换 🛭 对角化.

Sol $\varphi_{A}(\lambda) = \varphi_{A}(\lambda) = [\lambda E - A] = \lambda (\lambda + 2)^{2}$ 故 d 有特征值 $\lambda_{1} = 0$, $\lambda_{2} = \lambda_{3} = -2$. 对于 $\lambda_{1} = 0$ 由 (1)有特征向量 $\alpha_{1} + \alpha_{2} + \alpha_{3}$.

对于 \(\lambda = \lambda \) 解为程 (A+2E) (X=0有解 \(\lambda = (|.l.\to)^T, \rangle = (|.\to,\to)^T, 从而有特征向量 (\) tale (A) Tobs 故在\的基 (X1+012+013) (X1+012) (X1-013) 下 × 的 矩阵为对角阵 diag fo,-2,-2 }

3. 判断下列矩阵是否可对角化, 如果可对角化将其对角化:
$$(1)$$
 $\begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix} = A$

$$\begin{array}{c|c} \underline{S_{0}} & \underline{\text{AF}} & \varphi_{A}(\lambda) = \begin{vmatrix} \lambda-5 & 6 & 6 \\ 1 & \lambda+4 & -2 \\ -3 & 6 & \lambda+4 \end{vmatrix} = (\lambda+1)(\lambda-2)^{2}$$

解为程(A-2E) x=0得特征向量(2.1.0)™(2.0.1)™,解(A-E) x=0得特征向量(3.1.3)™,

$$\frac{(2)\begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}}{S_{0}} \cdot \varphi_{B}(\lambda) = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda^{-3} & 0 \\ -1 & 0 & \lambda^{-2} \end{vmatrix} = (\lambda^{-2})(\lambda^{-1})^{2}, \quad \vec{m} \cdot (B - 2E)(B - E) = \begin{pmatrix} 2 & * & * \\ * & * & * \\ * & * & * \end{pmatrix} \neq 0, \quad \vec{p} B \vec{A} \vec{J} \vec{J} \vec{P} \vec{M}.$$

4. 试求

4. 试求
$$A = \left(\begin{array}{cccc} 1 & b & a & c \\ 0 & 2 & c & a \\ 0 & 0 & 1 & b \\ 0 & 0 & 0 & 2 \end{array}\right)$$
 可对角化的充要条件.

显然 A 的特征值为 $\lambda_1=\lambda_2=\lambda_3=\lambda_4=2$, 放 A 可对角化 \iff d_A $(\lambda)=(\lambda+)(\lambda-2)$ 而 $(A-E)(A-2E) = \begin{pmatrix} O & M \\ O & O \end{pmatrix}$ 其中 $M=\begin{pmatrix} bc-a & 2ab \\ O & bc+a \end{pmatrix}$,于是A可对所化 \iff a=0 ,bc=0 .

$$(c_A : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}) (c_A(X) = AX - XA)$$

(1) 证明: φ_A 是 $\mathbb{C}^{n\times n}$ 上的线性变换

$$\frac{P_{mof}}{\varphi_{A}(x+\gamma)} = A(x+\gamma) - (x+\gamma)A = (Ax-xA) + (A\gamma-\gammaA) = \varphi_{A}(x) - \varphi_{A}(\gamma)$$

$$\varphi_{A}(cX) = A(cX) - (cX)A = c(AX-xA) = c\varphi_{A}(x)$$

故YA 是Chan上的线性d模。口

(2) 当 n=2, $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 时, 求 φ_A 在自然基 $\{E_{11},E_{12},E_{21},E_{22}\}$ 下的矩阵;

 P_{nof} 若A可对角化,则存在可逆阵 P使A = $P \wedge P^{+}$,其中人 = $O(\log \{\lambda_1, \dots, \lambda_n\}, \lambda_i)$ 为A的特征值取 C^{non} 的基 $\{P \in \mathcal{P}^{-}: | \leq i,j \leq n \nmid f \}$ $\{P \in \mathcal{P}^{-}\} = P \wedge E_{ij} P^{-} - P \in \mathcal{P}^{-}\}$ $\{P \in \mathcal{P}^{-}\} = \{\lambda_i - \lambda_j\} P \in \mathcal{P}^{-}\}$ 从而 $\{P_{A} \in \{P \in \mathcal{P}^{-}\} \}$ 下的矩阵为对角阵,即可对角化,口

6. 设矩阵
$$A=\begin{pmatrix} a & -1 & c \\ 5 & b & 3 \\ 1-c & 0 & -a \end{pmatrix}$$
 满足 $|A|=-1$, 并且其伴随阵 $\mathrm{adj}(A)$ 有一个特征值 λ_0 且对应的特征向量为 $(-1,-1,1)^T$,求 a,b,c,λ_0 .

Sol it
$$p = (-1, -1, 1)^T$$
, \mathbb{R} and $(A) p = \lambda_0 p$, which $\lambda_0 A p = -p$. $\mathbb{R} p$.
$$\begin{cases} \lambda_0 (-\alpha + 1 + c) = 1 \\ \lambda_0 (-b - 2) = 1 \end{cases} \Rightarrow \begin{cases} \alpha = c \\ \lambda_0 = 1 \\ b = -3 \end{cases}$$

 $2 \det A = 0-3 = -1, \text{ Lin } 0 = 0 = 2.$

7. 设 \mathcal{A} 是有限维线性空间 V 上的线性变换, W 是 V 的子空间, 证明:

 $\dim W = \dim(\mathscr{A}(W)) + \dim(\ker \mathscr{A} \cap W),$

其中 $\mathscr{A}(W) = \{\mathscr{A}(\alpha) : \alpha \in W\}.$

Pnof 若ker $A \cap W = fof$, 取 W 的基 A_1, \dots, A_m , 其中 m = d $m \cdot W$. 来证 $A(a_1), \dots, A(a_m)$ 是 A(w) 的基.

一方面,任取 $\beta \in A(w)$, 存在 $A = \sum_{i=1}^m k_i A(a_i)$. 另一方面 该 $\sum_{i=1}^m k_i A(a_i)$. 另一方面 该 $\sum_{i=1}^m k_i A(a_i)$. 另一方面 该 $\sum_{i=1}^m k_i A(a_i)$. 别有 $\sum_{i=1}^m k_i A(a_i)$ 是 $\sum_{i=1}^m k_i A($

若 ker 刘 \cap W + fot。 取它的基号,…… 号k, 扩为W的基 $31, \dots, 3k$, 3k $1, \dots, 3m$, 其中 m = d 1 m

In 由于以有化的现在 $d(\lambda) = (\lambda-2)(\lambda-1)$,则 刘阳最小的顶式为 $d_{A}(\lambda) = (\lambda-2)(\lambda-1)$,于是 f_0 刘可对角化,且有 V 的直和分解 $V = \ker(A-E)$ 的 $\ker(A-2E)$.

下证
$$\ker(A-E) = \operatorname{Im}(A-2E) - 方面,该\beta = (A-2E)(A) \in \operatorname{Im}(A-2E) . 刚有 (A-E)(\beta) = (A-E)(A-2E)(A) = 0$$

即B \in ker (\mathscr{A} - ε). 另一方面, 沒 $\eta \in$ ker (\mathscr{A} - ε), 由于 (λ +, λ -z) =1, 则存在 $U(\lambda)$, $V(\lambda)$, sit. $U(\lambda)$ (λ - λ - λ) =1

則有 $\eta = \mathcal{E}(\eta) = \mathcal{U}(\mathcal{A} - \mathcal{E})(\eta) + \mathcal{V}(\mathcal{A})(\mathcal{A} - 2\mathcal{E})(\eta) = (\mathcal{A} - 2\mathcal{E})(\mathcal{A})(\eta_1) \in \text{Im}(\mathcal{A} - 2\mathcal{E})$ 故 $\text{ker}(\mathcal{A} - \mathcal{E}) = \text{Im}(\mathcal{A} - 2\mathcal{E})$,同理有 $\text{ker}(\mathcal{A} - 2\mathcal{E}) = \text{Im}(\mathcal{A} - \mathcal{E})$. Totallow $\text{Totall$

Prof 这等介于对 Y peGLn (F) 有 PTAP=A.则A= XE. □

10. 设 \mathcal{A} 是 n 维线性空间 V 的一个线性变换, 如果 V 的每一个子空间都是 \mathcal{A} 的不变子空间, 则 \mathcal{A} 是 一个粉乘市埠

11. 设
$$N$$
 是 n 阶幂零阵, 幂零指数恰为 n (即 $N^{n-1} \neq O, N^n = O$), 证明: N 相似于
$$\begin{pmatrix} 0 \\ 1 & 0 \\ & \ddots & \ddots \\ & & 1 & 0 \end{pmatrix}.$$

Proof 考虑 F^n 上的 左乘 $\mathcal{N}: F^n \to F^n$, $\mathcal{N}(\alpha) = N\alpha$. 别存在 $\alpha \in F^n$ 使 $\mathcal{N}^n(\alpha) \neq 0$.

下面来证 风, 水风, 、、水气风 是一组基 那么从在这组基下的矩阵为 ()。)

设有 $k_0 Q + k_1 \mathcal{N}(Q) + \dots + k_{n+1} \mathcal{N}^{n+1}(Q) = 0$,则有 $k_0 \mathcal{N}^{n+1}(Q) = 0$,政 $k_0 = 0$,同理有 $k_1 = \dots = k_{n+1} = 0$ 因此有 $Q_1 \mathcal{N}(Q)$, \dots , $\mathcal{N}^{n+1}(Q)$ 是一组基。 Q_2

12. 设 n 阶方阵 A, B 满足 AB = 2A + B, 已知 B 的特征值为 $\lambda_1, \dots \lambda_n$, 求 A 的所有特征值.

$$\begin{pmatrix} A & A^{2} \\ A^{2} & A \end{pmatrix} \begin{pmatrix} \alpha i \\ \alpha i \end{pmatrix} = (\lambda i + \lambda i) \begin{pmatrix} \alpha i \\ \alpha i \end{pmatrix}, \quad \begin{pmatrix} A & A^{2} \\ A^{2} & A \end{pmatrix} \begin{pmatrix} \alpha i \\ -\alpha i \end{pmatrix} = (\lambda i - \lambda i) \begin{pmatrix} \alpha i \\ -\alpha i \end{pmatrix}$$

故 $\begin{pmatrix} A & A^2 \\ A^2 & A \end{pmatrix}$ 的特征值为 $\lambda_1 \pm \lambda_1^2$, ..., $\lambda_n \pm \lambda_n^2$

14. 设 $D \in \mathbb{F}^{n \times n}$ 为对角阵, 其特征多项式为

$$\varphi_D(\lambda) = (\lambda - \lambda_1)^{m_1} (\lambda - \lambda_2)^{m_2} \cdots (\lambda - \lambda_s)^{m_s},$$

其中 $\lambda_1, \dots, \lambda_s \in \mathbb{F}$ 互异, 设

$$V = \{ B \in \mathbb{F}^{n \times n} : BD = DB \},\$$

证明 V 是 $\mathbb{F}^{n\times n}$ 的子空间, 并且 $\dim V = m_1^2 + \cdots + m_s^2$.

又对 CEF有(CB)D= CDB, =D(CB,). 即 CB, eV. 故 V是开 Nxn的子空间

曲腿有
$$D = \text{diag} \left\{ \lambda_1 E_{m_1}, \dots, \lambda_6 E_{m_5} \right\}$$
 特 B进行同样的分块 $B = \begin{pmatrix} B_{11} & B_{12} & \dots & B_{15} \\ B_{21} & B_{22} & \dots & B_{25} \\ B_{51} & B_{52} & \dots & B_{55} \end{pmatrix}$

由 BD=PB有 λ_1 $B_{12} = \lambda_2$ B_{12} ,而 $\lambda_1 \neq \lambda_2$,故 $B_{12} = 0$. 同理有 $B_{ij} = 0$ $(i \neq j)$. 从而 $B = \begin{pmatrix} B_{11} \\ B_{12} \end{pmatrix}$ 并且智易验证形如 $\begin{pmatrix} B_{11} \\ B_{23} \end{pmatrix}$ 的矩阵与 D 可交换。故 $V = \left\{ \begin{pmatrix} B_{11} \\ B_{23} \end{pmatrix} : B_{i} \in \mathbb{F}^{m_{i} \times m_{i}} \right\}$ 从而 d in $V = m_{i}^{2} + \dots + m_{i}^{2}$

15. 设 $A, B \in \mathbb{F}^{n \times n}$, 证明以下三条等价:

 $(1)(\varphi_A(\lambda),\varphi_B(\lambda))=1;$ $(2)\varphi_A(B)$ 可逆; (3) 矩阵方程 AX=XB 只有零解.

Proof (1) ⇒ (2) 该((PA(N), PB(N))=1, 则存在 U(N), V(N) eff [N]使

$$(\lambda) (\gamma_A (\lambda) + \nu(\lambda) (\gamma_B (\lambda) = 1)$$

代λB由Cayley-Hamilton定理有U(B) (PA(B)=E, 故(PA(B)可道.

(2) ⇒(3) 由 AX=XB可得 (A)X=O=X(A(B), 而 (A(B))可选,这就有XX能为O.

(3) \rightarrow (1) 反证,该 (4A (1), 4B((1)) +1、则 4A((1)),4B((1)) 有 (1) 有 (1)

$$A(\alpha \beta^T) = \lambda_{\sigma} \alpha \beta^T = (\alpha \beta^T) B$$

即AX=XB有非0解. 口

16. 设 V 是复数域上 n 维线性空间, $\mathscr{A}_1, \mathscr{A}_2$ 是 V 的线性变换, 且 $\mathscr{A}_1\mathscr{A}_2 = \mathscr{A}_2\mathscr{A}_1$. 证明:

(1) 如果 λ_0 是 \mathcal{A}_1 的特征值, 则 λ_0 的特征子空间 V_{λ_0} 也是 \mathcal{A}_2 的不变子空间;

Prof 由于 V入。是 对之的不多子空间,于具有限制会换 对之 V入。有特征同量 B, 即为 FT不. □
(3) 如果 对有 n 个不同的特征值,则 V 必存在一个基使 对, 对 在这个基下的矩阵同时为对角矩阵.

 \underline{Prof} 该如的特征值为 $\lambda_1,...,\lambda_n$,特征3空间为 $V_{\lambda_1},...,V_{\lambda_n}$ 则 $V=V_{\lambda_1}$ 图 V_{λ_n} 由(I)(2),且在每个 V_{λ_1} 中有所特征向量 S_{λ_1} 于是在 $S_{\lambda_1},...,S_n$ 下义。从2均为对职阵。口

17. 设有 n 阶矩阵 A, B, 若 A 是幂零的, 且 AB = BA, 则 |A + B| = |B|.

Prof 将A,B视为复为阵,则A,B可同时上三角化,从而 |A+B| = |B|. D

18. 设 n 阶复矩阵 A 有 n 个不同的特征值. 求证: 复矩阵 B 可对角化的充分必要条件是存在次数不超过 n-1 的多项式 $f(\lambda)\in\mathbb{C}[\lambda]$ 使得 B 相似于 f(A).

Proof 不妨将A取为对角阵 A=diag {\\.....\ln}

税性: 若 B \simeq f(A), 则 B \simeq diag $\{f(\lambda_i), \dots, f(\lambda_n)\}$, 對然可对用化

は要性: 该 B可对形,则B co diag f μ. μn], 其中μi为B特征值,由Lagrange 插值反理

可知存在 $f(\lambda) \in \mathbb{C}_{M}[\lambda]$ 使 $f(\lambda) = \mu$. 故 $B \sim f(A)$. \square